Distance, Speed, and Unit Conversion SPH4C

A scalar qua	antity has	(siz	e) only.		
Examples o	f scalars:				
	 				
0					
Alex walks 2	2 m [North] and 1	m [South]. What is the	total distance he v	valks?	
Distance is	a scalar:		·		
Average spe	eed is defined as t	the distance travelled p	per interval of time	, or	
Speed will the	herefore have unit	s of	(typic	ally).	
Example:	Matt runs 180 m What is his aver	in 0.75 min. age speed in m/s?			
First, what is	s 0.75 minutes in	seconds?			
To express a	a measurement in	different units, we mu	Itiply the measurer	ment by a	
		that is e	qual to 1.		
Since	e 1 minute = 60 se	conds,			
The unit we	want to	out goes in th	ne	of the fact	or.
The unit we	want to	goes in the			

Example:	Matt runs 180 m in 0.75 min. What is his average speed in m/s?					
Givens:	Select:					
Unknown:	Solve:					
The equation for average speed can be rearranged to solve for distance or time:						
	$v_{avg} = \frac{\Delta d}{\Delta t}$					
	$v_{avg} = \left(\frac{\Delta d}{\Delta t}\right)$					
	$v_{avg} =$					
	v _{avg} = =					
	$\Delta t =$					
Another Example: If Megan is running at 4 m/s, how long will it take her to run a 5 km trail?						
Givens:	Select:					
Unknown	Colver					
Unknown:	Solve:					

A metric _____ may be used to indicate a unit that is some _____ larger or smaller than the base unit.

1 km = _____ or ____

Symbol	Prefix	Multiplication Factor		
Е	exa	10 ¹⁸	1,000,000,000,000,000,000	
P	peta	10 ¹⁵	1,000,000,000,000,000	
T	tera	10 ¹²	1,000,000,000,000	
G	giga	10°	1,000,000,000	
M	mega	10 ⁶	1,000,000	
k	kilo	10 ³	1,000	
h	hecto	10 ²	100	
da	deka	10 ¹	10	
d	deci	10 ⁻¹	0.1	
С	centi	10 ⁻²	0.01	
m	milli	10 ⁻³	0.001	
μ	micro	10 ⁻⁶	0.000,001	
n	nano	10 ⁻⁹	0.000,000,001	
р	pico	10 ⁻¹²	0.000,000,000,001	
f	femto	10 ⁻¹⁵	0.000,000,000,000,001	
a	atto	10 ⁻¹⁸	0.000,000,000,000,000,001	

For example,

⁸/₄ 2 ms =

 $\frac{8}{4}$ 2 ns =

 $\frac{8}{4}$ 20 ns =

Finally, converting some units may require multiplying by more than one conversion factor. For example,

More Practice

1. Match each r	measurement with a i	metric prefix below	with its equivalent:	
5 Mm	5 mm	5 nm	5 km	5 μm
A. 5 x 10 ³ m	B. 5 x 10 ⁻⁹ m	C. 5 x 10 ⁶ m	D. 5 x 10 ⁻³ m	E. 5 x 10 ⁻⁶ n
2. Light from the	e Sun takes 8.3 min t	to reach the Earth.	Convert this measure	ement to s:
3. Convert 125	lb to kg given that 1 k	kg = 2.2 lb.		
4. Usain Bolt ca	n run at a speed of 3	37.6 km/h. Convert	this measurement to	m/s.
5 Ms Roseber	y takes 0.5 h to drive	30 km. What was I	ner average speed?	
(Show a GUSS		oo kiii. Wiidt was i	ici average speca:	
6 The Space S	huttle could traval at	an orbital around of	8000 m/s How for a	ould it traval in
	huttle could travel at show a GUSS solution		oooo iii/s. How iai c	ould it traver in